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approximately as strong as it is in even-parity states; 
and this suggests that a value of D close to 40 MeV 
may be expected. 

The validity of the representation of the A-nucleon 
interaction by effective central potentials is doubtful at 
the higher energies we have considered. At these en
ergies, the effects of possible noncentral components 
may be important8,9'17'37 and quite different from their 
effects in hypernuclei. Moreover, there may be an ap
preciable effect from the presence of the S-production 
channel.8,9 The cross sections reported here for the 
higher energies are, therefore, to be considered only as 
the contributions of those components of the A-nucleon 
interaction which can reasonably be represented by ef
fective central potentials at low energies. 

That the presence of the 2J-production channel can 
have a pronounced effect in A-nucleon scattering has 
been emphasized by de Swart et a/.8,9 In particular, de 
Swart and Dullemond8 have calculated A-nucleon scat
tering cross sections with hyperon-nucleon potentials 
deduced from phenomenological nucleon-nucleon poten
tials under the assumption of a universal pion-baryon 

1. INTRODUCTION 

SUPPOSE an unstable particle or state X is produced 
in the reaction 

A+B-+C+X (1.1) 

and then decays according to 

X-+D+E, (1.2) 

where A, B, C, and D have spin zero, and E is either a 

* Work performed under the auspices of the U. S. Atomic Energy 
Commission. 

f This work was reported briefly at the Chicago Meeting of the 
American Physical Society [M. Peshkin, Bull. Am. Phys. Soc. 8, 
514 (1963)]. 

s; interaction. Their cross sections have a prominent peak 
V in the neighborhood of the S-production threshold 

(about 76 MeV in the zero-momentum frame), and 
>n have values above that threshold which are appreciably 
it larger than the average empirical cross sections of 
l- Groves20 and of Alexander et al.ls Although their cross 
ts sections are consistent with the average empirical cross 
ir section of Arbuzov et al.19, the measured and calculated 
)- angular distributions appear to be inconsistent. The 
n cross sections o-(a) to which our effective central poten-
e tials lead for energies above the 2-production threshold 
LS are closer to the empirical cross sections of Groves and 
n of Alexander et al. than are those of de Swart and 
:- Dullemond. Considering the preliminary nature of the 

scattering data, however, it is probably too early to 
ti draw a conclusion from this comparison. 
.s 
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spinless particle or a gamma ray. It was first pointed 
out by Bohr1 that conservation of parity in the produc
tion reaction implies a symmetry condition for the spin 
state of Xy and consequently also for its decay products. 
Bohr found that if the spiny of state X is equal to unity, 
then the angular distribution of its decay is given (for 
spinless E) by 

/(0)=(3/4TT)COS20, (1.3) 

if the intrinsic parity is unchanged in the production 
process, and by 

1(d) = (3/8TT) sin20, (1.4) 
1 A. Bohr, Nucl. Phys. 10, 486 (1959). 
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Bohr's symmetry method is applied to an unstable spin-^' state X, which is produced in a reaction A -\-B —-> 
C-\-X and then decays according to X —> D-\~E. Particles A, B, C, D are assumed to be spinless, and E is 
either a spinless particle or a gamma ray. Parity is conserved in production, but not necessarily in decay. 
The angular distribution of E, in the rest system of X, is 1(6) = ̂ aLPL (cos0), where L^2j and the polar 
angle 6 is measured from the normal to the production plane. The coefficients ah depend upon the produc
tion angle 5 and upon the dynamics of the production. It is proved here that the sign of the maximum-
complexity coefficient a^j depends only upon the parity of X, and that the magnitude of a2/ is not zero but 
lies between bounds which depend upon j and the parity alone. The implied test for j and the parity has 
the following advantages: (1) The spin j is equal to half the largest L in 1(6). Addition of a small amount 
of a higher PL, which always improves the fit, is forbidden by the lower bound of a2j. (2) The bounds of a2/ 
are independent of 5. Any (perhaps biased) average over 5 may be performed before expanding 1(6) in the 
PL. (3) All the data are condensed into a single test quantity #2/, whose statistical error is reliably known. 
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if the intrinsic parity is changed. The polar angle 6 is 
measured between the momentum of E (in the rest 
frame of X) and the normal to the production plane. 
Distributions (1.3) and (1.4) have the virtue that they 
do not depend upon the direction in which X is produced. 

In this report, Bohr's method is extended to all values 
of the spin j . It is demonstrated that the coefficient of 
the most complicated Legendre polynomial in 1(6) deter
mines the spin and parity of X unambiguously. 

The method given here retains the severe restric
tions on particles A-E. However, many cases of prac
tical importance are in fact covered. The target B must 
always be a spinless nucleus, such as an alpha particle. 
The projectile A may be another spinless nucleus or a 
pion or kaon. Examples of X include nuclear and hyper-
nuclear states and new mesons. A new meson would 
have to be accompanied by a spinless nuclear state C, 
but it appears that such processes are likely to be 
important at very high energies.2 

2. MAXIMUM-COMPLEXITY COEFFICIENT 

Consider first the case in which E is a spinless particle. 
Let 5 represent the production angle, i.e., the angle be
tween the momentum of A and that of X in the center-
of-mass system for reaction (1.1). The spin function 
X(8) for particles X moving in a given direction may 
be expressed as 

TABLE I. Bounds of the maximum-complexity coefficient. 

X(*)= XmPmWXj, (2.1) 

where the quantization (z) axis is taken as the normal 
to the production plane. The coefficients 0m(5), which 
depend upon the dynamics, are normalized so that 

.(*)l*=i. (2.2) 

The maximum-complexity method is based on Bohr's 
observation that conservation of parity in the produc
tion process (1.1) implies that only even or only odd m 
contribute to the sum (2.1). Even m appear if there is 
no change in the intrinsic parity in (1.1), i.e., if PAPB 
= PcPx> Odd m appear if there is change ("yes") in the 
intrinsic parity.3 

After decay, the angular part of the wave function 
for E, in the rest system of X, becomes 

*a(0,0)= Zm/M5)F iw(0,0), (2.3) 

where the notation E ' is u s e d as a reminder that only 
even tn, or only odd m, contribute. The angular 
distribution 

h(fi)=\ |*a(0,*)|y* (2.4) 

2 S. M. Berman and S. D. Drell, Phys. Rev. Letters 11, 220 
(1963). These authors also give useful angular distribution tests 
which depend upon the azimuthal as well as the polar angle. 

3 Bohr proves this statement by considering the operation R, 
which is space inversion followed by 180° rotation about the z 
axis. When R acts on the initial state of reaction (1.1), it merely 
multiplies the wave function by the intrinsic parity PAPB. How
ever, when it acts on a spin function Xjm, it multiples it by (— 1)TO. 
Then X(5) can contain only those m for which (— l)m = PAPBPcPx. 

j 

0 
0 

1 
1 

2 
2 

3 
3 

4 
4 

Parity 
change 

no 
yes 

no 
yes 

no 
yes 

no 
yes 

no 
yes 

E — spinless particle 

0 0 = 1 

forbidden 

#2 = 2 
a2= — 1 

3/7<04<18/7 
a 4 = - 1 2 / 7 

30/33 <0 6< 100/33 
-75 /33 <a 6 < - 5 / 3 3 

7/143<08< 490/143 
-392/143<0 8<-56/143 

E — gamma ray 

forbidden 
forbidden 

^ 2 = — 1 

# 2 = 2 

- 1 2 / 7 < 0 4 < - 2 / 7 
04 = 8/7 

-100/44 < a6 < - 3 0 / 4 4 
5/44 < 0 6 < 75/44 

-196O/715<08<-28/715 
224/715<03< 1568/715 

is expressed in terms of the Legendre polynomials 
through 

h{B) = \ E aL(5)PL(cosd) . (2.5) 

The factor § is included to give the normalization 
condition 

a0(6)=l. (2.6) 

Equations (2.3)-(2.5) are easily combined to give 

aL(5) = [(2L+l)47r]*(Fy||FL||Fy) 
X Em \^m(d)\2CULj;m0m), (2.7) 

where the function C is the vector coupling coefficient,4 

and the reduced matrix element is given by5 

toll Fill Fy>= l(2L+ l)/4x]* C(jLj-fiOO). (2.8) 

In the usual case, the value of j cannot be deduced 
directly from the experimental Is(6) because any CL(S) 
may vanish by numerical accident in the sum (2.7). 
Then it can only be ascertained that j is not less than 
half the maximum L for which <IL(8) is different from 
zero. However, the Bohr restriction to only even or only 
odd m makes it possible to take advantage of a special 
feature of the vector coefficients for L~2j, which have 
the simple form6 

2j+l 1* 
C(j,2j,j;mQm)=(-i)+-

.(4H-1)LJ 

X-
(2/) 1(2./)! 

(2.5 
(j-\-m)\(j—m)\ 

Since all the vector coefficients in the sum (2.7) for 
4 In angular-momentum quantities, the notation is that of M. E. 

Rose, Elementary Theory of Angular Momentum (John Wiley & 
Sons, Inc., New York, 1957). 

6Ref. 4, p. 88.^ 
6 This expression is easily obtained from Racah's formula 

[Ref. 4, p. 40], which reduces to one term in the case of maximum 
complexity. 
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L— 2j have the same sign,7 d2j(8) cannot vanish and its 
sign determines the parity of X. The numerical value 
of azj($) must lie between bounds determined by the 
largest and the smallest vector coefficients for given j 
and parity. These bounds are obtained from Eq. (2.7) 
by substituting the extreme values of the vector coef
ficients for the weighted average over possible values of 
m. Numerical results for small values of j are given in 
Table I. In cases in which the sum contains only a 
single term, or no term, d2j(8) is determined exactly. 
In particular, the casej= 1 is identical to that of Bohr 
and agrees with his result. 

The case in which E represents a gamma ray instead 
of a spinless particle presents no difficulty. The intensity 
must be summed over polarization directions. This sum 
is easy to carry out. The expression for GL (8) is un
changed, except for the reduced matrix element. In par
ticular, the reduced matrix element appearing in the 
expression for the maximum complexity coefficient is 

foil F2j-!lTi>= - U/U+ i ) M r„|| Yj). (2.io) 
The bounds for d2j(8) in this case are shown in the last 
column of Table I. 

3. COMMENTS 

The coefficient of the most complex term in the ex
perimental angular distribution (2.5) determines the 
spin and parity of X unambiguously. This maximum-
complexity test has several important practical 
advantages. 

First, the bounds of d2j(8) are independent of <5. It is 
therefore permissible to integrate the experimental 
I8(6) over all production angles 8 before carrying out 
the expansion in the PL. The only role of the production 
angle is to determine the z direction for the measure
ment of 6 in each event. This advantage may be decisive 
in a situation in which there are perhaps a few hundred 
events in all. In that case, it is impossible to obtain an 
angular distribution of the decay at any one production 
angle, but the total angular distribution is still moder
ately well determined. It is also possible to integrate 
over a restricted range of 8, to avoid directions of high 
background. An experimental bias against some direc
tions is acceptable as long as the bias depends only 
upon 8 and not upon 6. It can even happen that the test 
for some spin and parity assignment may be statistically 
indecisive when all production angles are allowed, but 
that the assignment is clearly rejected by taking only a 
limited range of 8. 

Second, the largest L in 1(6) is unambiguously identi-
7 The alternation of the sign of the vector coefficient with m is of 

course no accident. The wave functions Yjm are large on (2/+1) 
more or less uniformly spaced cones. The polynomial P2/(cos0) has 
2/ null points, also fairly uniformly spaced. Thus, P^ changes sign 
between alternate cones. 

fled by the bounds of a2y, if the statistical accuracy is 
good enough. In practical cases, a good fit with a cer
tain Zmax can always be improved by adding a small 
amount of PL with L=L m a x +2. However, the bounds 
of the coefficient of maximum complexity forbid adding 
a very small amount. Thus, the identification of Lmax is 
likely to be unambiguous. 

Third, the hypothesis that X has spinj is tested by a 
single test quantity d2h which summarizes all the data, 
and whose statistical uncertainty can be estimated 
reliably. 

Fourth, although the maximum-complexity method 
applies only to special cases, they are just the cases in 
which angular correlations with other decays are not 
available, since all the other particles present are 
spinless. 

The maximum-complexity method is evidently most 
useful in the type of experiment in which a small num
ber of events is measured completely, regardless of the 
direction of the tracks, since 1(6) involves an integra
tion over all azimuthal directions #. However, it has 
some possibility of application to counter techniques as 
well. It is, unfortunately, necessary to move the E 
counter over the entire surface of a sphere. This is 
partially compensated by the feature that the C counter 
need not be moved at all, and may occupy a whole 
circle. Moreover, it is not necessary to have a statisti
cally meaningful counting rate as a function of 6 and (j>; 
it is enough that the integral over 0 for each 6 should be 
meaningful. 

The maximum-complexity method can be extended 
to a few cases not considered here, but there the analysis 
is not as powerful, and will not be given in detail. Quite 
generally, if A is a particle of integral spin different 
from zero, the results given here apply provided that A 
is aligned to give only an even or only an odd z com
ponent of its spin. If the z component is odd, the parity 
must be reversed in using Table I. Probably the most 
practical example is a gamma ray polarized either in the 
z direction or perpendicular to it. Aligned deuterons are 
another possibility. In either case, the production direc
tions for which the analysis is valid are restricted^to the 
plane perpendicular to the z axis, which is now deter
mined by the characteristics of the initial state. Similar 
statements can be made when B represents a polarized 
proton target, but then 2j is odd and the maximum-
complexity coefficient vanishes unless parity is mixed 
in the decay of X. 

The maximum-complexity test cannot be generalized 
to include arbitrary spins of D and E, because the re
duced matrix elements are usually unknown. When E 
has unit spin, the results for gamma rays apply if the 
spin state of E is known to be transverse. This condi
tion is necessarily met if the parity change in production 
equals (—T)7 and parity is conserved in decay. 


